1,671 research outputs found

    Poly[[μ10-4,4′-(ethane-1,2-diyldi­oxy)dibenzoato]dipotassium]

    Get PDF
    The title salt, [K2(C16H12O6)]n, was obtained by the reaction of 1,2-bis­[4-(ethyl-carbox­yl)-phenox­yl]ethane with KOH in water. The anion lies on a crystallographic inversion center, which is located at the mid-point of the central C—C bond. The K+ cation is coordinated by six O atoms, two from the chelating carboxyl­ate group of the anion and four from four neighboring and monodentately binding anions, giving rise to an irregular [KO6] coordination polyhedron. The coordination mode of the cation leads to the formation of K/O layers parallel to (100). These layers are linked by the nearly coplanar anions (r.m.s. deviation of 0.064 Å of the carboxyl, aryl and O—CH2 groups from the least-squares plane) into a three-dimentional network

    Modelling reliability and distribution of travel times in transit

    Get PDF

    Dichlorido(4′-phenyl-2,2′:6′,2′′-ter­pyridyl)zinc

    Get PDF
    The title compound, [ZnCl2(C21H15N3)], was obtained from the reaction of ZnCl2·4H2O with 4′-phenyl­terpyridine (L) and disodium 2,6-dipicolinate. The Zn2+ cation is ligated by the N atoms of the tridentate L ligand and two chloride anions, forming a ZnN3Cl2 polyhedron with a distorted trigonal–bipyramidal coordination geometry. In the crystal, nonclassical C—H⋯Cl hydrogen bonds are observed

    Adaptive Sparse Pairwise Loss for Object Re-Identification

    Full text link
    Object re-identification (ReID) aims to find instances with the same identity as the given probe from a large gallery. Pairwise losses play an important role in training a strong ReID network. Existing pairwise losses densely exploit each instance as an anchor and sample its triplets in a mini-batch. This dense sampling mechanism inevitably introduces positive pairs that share few visual similarities, which can be harmful to the training. To address this problem, we propose a novel loss paradigm termed Sparse Pairwise (SP) loss that only leverages few appropriate pairs for each class in a mini-batch, and empirically demonstrate that it is sufficient for the ReID tasks. Based on the proposed loss framework, we propose an adaptive positive mining strategy that can dynamically adapt to diverse intra-class variations. Extensive experiments show that SP loss and its adaptive variant AdaSP loss outperform other pairwise losses, and achieve state-of-the-art performance across several ReID benchmarks. Code is available at https://github.com/Astaxanthin/AdaSP.Comment: Accepted by CVPR 202

    Mirror symmetry decomposition in double-twisted multilayer graphene systems

    Full text link
    Due to the observed superconductivity, the alternating twisted trilayer graphene (ATTLG) has drawn great research interest very recently, in which three monolayer graphene (MLG) are stacked in alternating twist way. If one or several of the MLG in ATTLG are replaced by a multilayer graphene, we get a double twisted multilayer graphene (DTMLG). In this work, we theoretically illustrate that, if the DTMLG has a mirror symmetry along z direction like the ATTLG, there exists a mirror symmetry decomposition (MSD), by which the DTMLG can be exactly decoupled into two subsystems with opposite parity. The two subsystems are either a twisted multilayer graphene (single twist) or a multilayer graphene, depending on the stacking configuration. Such MSD can give a clear interpretation about all the novel features of the moir\'{e} band structures of DTMLG, e.g. the fourfold degenerate flat bands and the enlarged magic angle. Meanwhile, in such DTMLG, the parity becomes a new degree of freedom of the electrons, so that we can define a parity resolved Chern number for the moir\'{e} flat bands. More importantly, the MSD implies that all the novel correlated phases in the twisted multilayer graphene should also exist in the corresponding DTMLGs, since they have the exact same Hamiltonian in form. Specifically, according to the MSD, we predict that the superconductivity should exist in the (1+3+1)-DTMLG.Comment: 12 pages, 6 figure

    Heat shock transcription factor 1 preserves cardiac angiogenesis and adaptation during pressure overload

    Get PDF
    To examine how heat shock transcription factor 1 (HSF1) protects against maladaptive hypertrophy during pressure overload, we subjected HSF1 transgenic (TG), knockout (KO) and wild type (WT) mice to a constriction of transverse aorta (TAC), and found that cardiac hypertrophy, functions and angiogenesis were well preserved in TG mice but were decreased in KO mice compared to WT ones at 4 weeks, which was related to HIF-1 and p53 expression. Inhibition of angiogenesis suppressed cardiac adaptation in TG mice while overexpression of angiogenesis factors improved maladaptive hypertrophy in KO mice. In vitro formation of vasculatures by microvascular endothelial cells was higher in TG mice but lower in KO mice than in WT ones. A siRNA of p53 but not a HIF-1 gene significantly reversed maladaptive hypertrophy in KO mice whereas a siRNA of HIF-1 but not a p53 gene induced maladaptive hypertrophy in TG mice. Heart microRNA analysis showed that miR-378 and miR-379 were differently changed among the three mice after TAC, and miR-378 or siRNA of miR-379 could maintain cardiac adaptation in WT mice. These results indicate that HSF1 preserves cardiac adaptation during pressure overload through p53-HIF-1-associated angiogenesis, which is controlled by miR-378 and miR-379

    Clinical application of the paraspinal erector approach for spinal canal decompression in upper lumber burst fractures

    Get PDF
    OBJECTIVE: Percutaneous pedicle screw fixation is commonly used for upper lumber burst fractures. The direct decompression remains challenging with this minimally invasive surgery. The objective was to evaluate a novel paraspinal erector approach for effective and direct decompression in patients with canal compromise and neurologic deficit. METHOD: Patients (n = 21) with neurological deficiency and Denis B type upper lumbar burst fracture were enrolled in the study, including 14 cases in the L1 and 7 cases in the L2. The patients underwent removal of bone fragments from the spinal canal through intervertebral foramen followed by short-segment fixation. Evaluations included surgery-related, such as duration of surgery and blood loss, and 12-month follow-up, such as the kyphotic angle, the height ratio of the anterior edge of the vertebra, the ratio of sagittal canal compromise, visual analog scale (VAS), Oswestry Disability Index (ODI), and Frankel scores. RESULTS: All patients achieved direct spinal canal decompression using the paraspinal erector approach followed by percutaneous pedicle screw fixation. The mean operation time (SD) was 173 (23) min, and the mean (SD) blood loss was 301 (104) ml. Significant improvement was noted in the kyphotic angle, 26.2 ± 8.7 prior to operation versus 9.1 ± 4.7 at 12 months after operation (p <0.05); the height ratio of the anterior edge of the injured vertebra, 60 ± 16% versus 84 ± 9% (p <0.05); and the ratio of sagittal canal compromise, 46.5 ± 11.4% versus 4.3 ± 3.6% (p <0.05). Significant improvements in VAS (7.3 ± 1.2 vs. 1.9 ± 0.7, p <0.05), ODI (86.7 ± 5.8 vs. 16.7 ± 5.1, p <0.05), and Frankel scores were also noted. CONCLUSIONS: The paraspinal erector approach was effective for direct spinal canal decompression with minimal injury in the paraspinal muscles or spine. Significant improvements in spinal function and prognostics were achieved after the percutaneous pedicle screw fixation

    The complete chloroplast genomes of three Betulaceae species: implications for molecular phylogeny and historical biogeography

    Get PDF
    Background Previous phylogenetic conclusions on the family Betulaceae were based on either morphological characters or traditional single loci, which may indicate some limitations. The chloroplast genome contains rich polymorphism information, which is very suitable for phylogenetic studies. Thus, we sequenced the chloroplast genome sequences of three Betulaceae species and performed multiple analyses to investigate the genome variation, resolve the phylogenetic relationships, and clarify the divergence history. Methods Chloroplast genomes were sequenced using the high-throughput sequencing. A comparative genomic analysis was conducted to examine the global genome variation and screen the hotspots. Three chloroplast partitions were used to reconstruct the phylogenetic relationships using Maximum Likelihood and Bayesian Inference approaches. Then, molecular dating and biogeographic inferences were conducted based on the whole chloroplast genome data. Results Betulaceae chloroplast genomes consisted of a small single-copy region and a large single copy region, and two copies of inverted repeat regions. Nine hotspots can be used as potential DNA barcodes for species delimitation. Phylogenies strongly supported the division of Betulaceae into two subfamilies: Coryloideae and Betuloideae. The phylogenetic position of Ostryopsis davidiana was controversial among different datasets. The divergence time between subfamily Coryloideae and Betuloideae was about 70.49 Mya, and all six extant genera were inferred to have diverged fully by the middle Oligocene. Betulaceae ancestors were probably originated from the ancient Laurasia. Discussions This research elucidates the potential of chloroplast genome sequences in the application of developing molecular markers, studying evolutionary relationships and historical dynamic of Betulaceae.It also reveals the advantages of using chloroplast genome data to illuminate those phylogenies that have not been well solved yet by traditional approaches in other plants
    • …
    corecore